Deficits in the sensitivity of striatal muscarinic receptors induced by 56Fe heavy-particle irradiation: further "age-radiation" parallels.
نویسندگان
چکیده
We had previously shown that there was a loss of sensitivity of muscarinic receptors (mAChR) to stimulation by cholinergic agonists (as assessed by examining oxotremorine enhancement of K(+)-evoked release of dopamine from neostriatal slices) in animals that had been exposed to energetic particles (56Fe, 600 MeV/n), an important component of cosmic rays. This loss of mAChR sensitivity was postulated to be the result of radiation-induced alterations in phosphoinositide-mediated signal transduction. The present experiments were undertaken as a first step toward determining the locus of these radiation-induced deficits in signal transduction by examining K+ enhancement of release of dopamine in 56Fe-exposed animals (0, 0.1, and 1.0 Gy) with agents [A23187, a potent Ca2+ ionophore, or 1,4,5-inositol trisphosphate (IP3)] that "bypass" the mAChR-G protein interface and by comparing the response to oxotremorine-enhanced K(+)-evoked release of dopamine. Results showed that although oxotremorine-enhanced K(+)-evoked release of dopamine was reduced significantly in the radiation groups, no radiation effects were seen when A23187 or IP3 was used to enhance K(+)-evoked release of dopamine. Since similar findings have been observed in aging, the results are discussed in terms of the parallels between aging and radiation effects in signal transduction that might exist in the neostriatum.
منابع مشابه
The effects of heavy particle irradiation on exploration and response to environmental change.
Free radicals produced by exposure to heavy particles have been found to produce motor and cognitive behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability of male Sprague-Dawley rats to detect novel arrangements in a given environment. Using a test of spatial memory previ...
متن کاملEffects of age and diet on the heavy particle-induced disruption of operant responding produced by a ground-based model for exposure to cosmic rays.
On missions to other planets, astronauts will be exposed to galactic cosmic rays which are composed of heavy particles (such as 56Fe) and protons. Exposure to these particles can affect the ability of rats to perform a variety of tasks, indicating that there is the possibility that the performance capabilities of astronauts may be affected. Previous research has shown that diets containing blue...
متن کاملCNS effects of heavy particle irradiation in space: behavioral implications.
Research from several sources indicates that young (3 mo) rats exposed to heavy particle irradiation (56Fe irradiation) produces changes in motor behavior as well as alterations in neuronal transmission similar to those seen in aged (22-24 mo) rats. These changes are specific to neuronal systems that are affected by aging. Since 56Fe particles make up approximately 1-2% of cosmic rays, these fi...
متن کاملThe role of acetylcholine muscarinic receptors in the rat basolateral amygdala on morphine-induced place preference
Some studies have shown that acetylcholine muscarinic receptors involved in the opiate reward. In the present study, the effect of intra-basolateral amygdale (BLA) acetylcholine muscarinic like receptor agonist (physostigmine) and antagonist (atropine) on the acquisition of morphine-induced place preference has been investigated in male Wistar rats. For this purpose, two 22 gauges guide cannula...
متن کاملExposure to heavy charged particles affects thermoregulation in rats.
Rats exposed to 0.1-5 Gy of heavy particles (56Fe, 40Ar, 20Ne or 4He) showed dose-dependent changes in body temperature. Lower doses of all particles produced hyperthermia, and higher doses of 20Ne and 56Fe produced hypothermia. Of the four HZE particles, 56Fe particles were the most potent and 4He particles were the least potent in producing changes in thermoregulation. The 20Ne and 40Ar parti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Radiation research
دوره 135 2 شماره
صفحات -
تاریخ انتشار 1993